Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Relational information between different types of entities is often modelled by a multilayer network (MLN) – a network with subnetworks represented by layers. The layers of an MLN can be arranged in different ways in a visual representation, however, the impact of the arrangement on the readability of the network is an open question. Therefore, we studied this impact for several commonly occurring tasks related to MLN analysis. Additionally, layer arrangements with a dimensionality beyond 2D, which are common in this scenario, motivate the use of stereoscopic displays. We ran a human subject study utilising a Virtual Reality headset to evaluate 2D, 2.5D, and 3D layer arrangements. The study employs six analysis tasks that cover the spectrum of an MLN task taxonomy, from path finding and pattern identification to comparisons between and across layers. We found no clear overall winner. However, we explore the task-to-arrangement space and derive empirical-based recommendations on the effective use of 2D, 2.5D, and 3D layer arrangements for MLNs.more » « less
- 
            null (Ed.)This paper introduces and studies the following beyond-planarity problem, which we call h-Clique2Path Planarity. Let G be a simple topological graph whose vertices are partitioned into subsets of size at most h, each inducing a clique. h-Clique2Path Planarity asks whether it is possible to obtain a planar subgraph of G by removing edges from each clique so that the subgraph induced by each subset is a path. We investigate the complexity of this problem in relation to k-planarity. In particular, we prove that h-Clique2Path Planarity is NP-complete even when h=4 and G is a simple 3-plane graph, while it can be solved in linear time when G is a simple 1-plane graph, for any value of h. Our results contribute to the growing fields of hybrid planarity and of graph drawing beyond planarity.more » « less
- 
            The visualization of a network influences the quality of the mental map that the viewer develops to understand the network. In this study, we investigate the effects of a 3D immersive visualization environment compared to a traditional 2D desktop environment on the comprehension of a network’s structure. We compare the two visualization environments using three tasks—interpreting network structure, memorizing a set of nodes, and identifying the structural changes—commonly used for evaluating the quality of a mental map in network visualization. The results show that participants were able to interpret network structure more accurately when viewing the network in an immersive environment, particularly for larger networks. However, we found that 2D visualizations performed better than immersive visualization for tasks that required spatial memory.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
